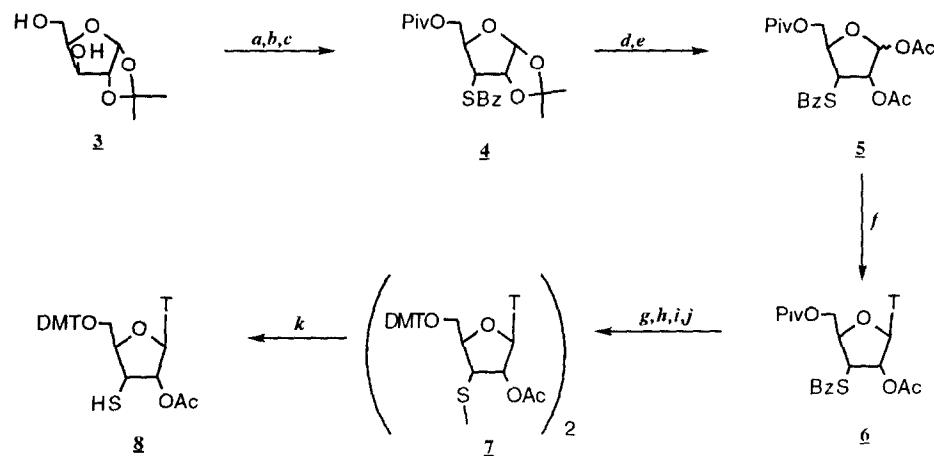
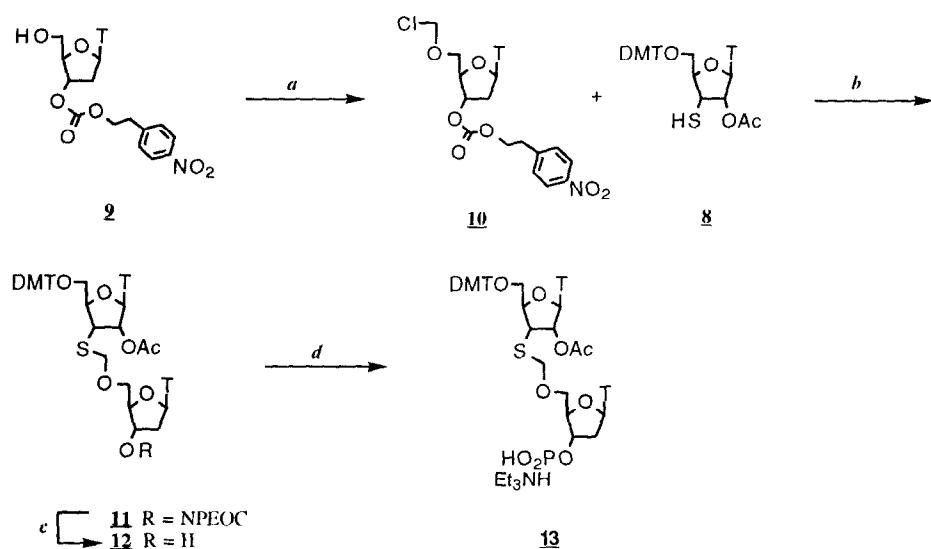

Preparation, Characterization and Binding Properties of an Oligodeoxynucleotide Containing the 3'-Ribothioformacetal Phosphate Analog

Xiaodong Cao and Mark D. Matteucci

Gilead Sciences, Inc. · 353 Lakeside Drive, Foster City, CA 94404


ABSTRACT: A thymine-thymine dimer containing the 3'-ribothioformacetal linkage **2** was prepared and incorporated into an oligodeoxynucleotide(ODN). The positions of 3'-ribothioformacetal **2** linkages were confirmed by partial and complete cleavage using $HgCl_2$. The ODN containing this synthon **2** binds to a complementary single stranded RNA with slightly less affinity as compared to the control ODN containing all 2'-deoxyribose nucleosides and phosphodiester linkages.

Oligodeoxynucleotide (ODN) analogs are of interest because of their potential ability to inhibit gene expression within cells.¹ We have recently described the synthesis and binding properties to complementary RNA of an ODN containing the 3'-thioformacetal **1** replacement of phosphodiester linkages.² The 3'-thioformacetal bearing ODNs demonstrated enhanced binding to a single stranded RNA target as compared to the control phosphodiester.² We now report the synthesis of the 2'-hydroxyl containing 3'-ribothioformacetal analog as a thymine-thymine dimer, **2**, its incorporation into an oligonucleotide and the resulting binding properties to the complementary RNA sequence.



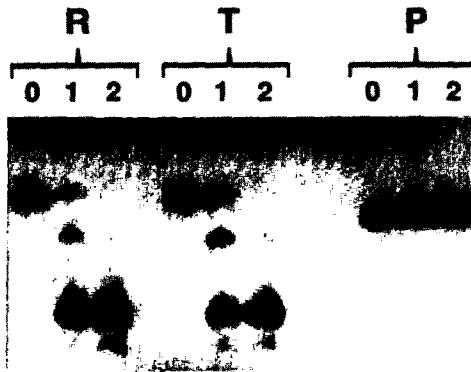
The synthesis (**Scheme 1**) started from commercial available 1,2-O-isopropylidene- α -D-xylofuranose **3**. The 5-position of **3** was selectively protected with trimethylacetyl chloride in pyridine. After activating the hydroxyl group at 3-position via trifluoromethylsulfonyl anhydride ($(TfO)_2O$) in pyridine, the thiobenzoyl was introduced to produce **4**. The isopropylidene group was removed with formic acid and the resulting hydroxyl groups were acetylated to yield compound **5**. Persilylated thymine was glycosylated with **5** by using TMS-triflate as the catalyst in acetonitrile to yield N-1-(2-O-acetyl-3-deoxy-5-O-pivaloyl-3-thiobenzoyl- β -D-ribofuranosyl)thymine (**6**).³ Only the N-1- β -isomer, identified by 1H -NMR, UV and MS analysis, was obtained. Deprotection of the acyl groups of **6** was followed by oxidation to the disulfide. Dimethoxytrityl and acetyl groups were then introduced into the 5'- and 2'-positions respectively to yield **7**.⁴ The disulfide **7** was reduced *in situ* with sodium borohydride to **8** and used without purification.

Scheme 1:

Scheme 2:

The p-nitrophenylethoxycarbonyl (NPEOC) group was chosen to protect 3'-position of **2⁵** (Scheme 2). This protecting group can be removed selectively by β elimination⁵ namely DBU in acetonitrile at 20°C. Compound **2** was chloromethylated² to **10** at 0°C for 2 hours and evaporated. The resulting oil was dissolved in dichloromethane and added into the solution of **8** (1 equivalent based on **2**) in the presence of diisopropylethylamine (DIPEA) yielding the thymine-thymine dimer **11**. Deprotection of **11** produced the dimer **12⁶** which was converted to the H-phosphonate **13⁷**.

The sequences **P**, **R** and **T** shown in Table 1 were synthesized via a H-phosphonate protocol.⁸ Sequence **R** contained the thymine-thymine ribothioformacetal, **2**, at two positions as shown. Sequence **T** contained the previous reported thymine-thymine thioformacetal, **1**.²


Table 1 Tm Analysis

		Tm°C	(Δ Tm)
C. Complementary RNA	3' ApGpApGpApGpApGpApGpApApApApA 5'		
P. Phosphodiester	5' d(TpCpTpCpTpCpTpCpTpTpTpT) 3'	62.5	
R. <u>Ribothioformacetal</u>	5' d(TpCpTpCpTpCpTpCpTpCpTpCpT*TpT*TpT) 3'	62.0	(-0.5)
T. Thioformacetal	5' d(TpCpTpCpTpCpTpCpTpCpTpCpT*TpT*TpT) 3'	63.0	(0.5)

* = modified linkage; p = phosphodiester bond; C = 5-Methyl C

The incorporation and the position of the ribothioformacetal (**2**) and thioformacetal (**1**) linkages were confirmed by partial and complete cleavage using HgCl₂ (Figure 1). Mercuric salts are known deprotection agents for the methylthiomethyl protecting group.⁹ ODNs were 5'-end labeled with ³²P and treated with 1mM aqueous HgCl₂. Denaturing PAGE (polyacrylamide gel electrophoresis) analysis after HgCl₂ cleavage and β -mercaptoethanol quench showed two cleavages corresponding to the two modified linkages for **R** and **T**. The phosphodiester control **P** showed no cleavage under identical conditions. The ODNs were further characterized by digestion with nuclease and phosphatase and HPLC analysis of the monomers and dimers.¹⁰ All ODNs showed the expected ratios.

Figure 1:

HgCl₂ Mapping conditions: The 5' labeled ODNs were treated with 1mM HgCl₂ in H₂O at 20°C (lane 0: no treatment; lane 1: 30 seconds and lane 2: 15 minutes) and quenched with 10 mM β -mercaptoethanol.

The effect of the modification on hybridization affinity was assessed by thermal denaturation. The melting temperature(*T_m*) (**Table 1**) of analog/single stranded RNA duplexes was compared to duplex derived from the unmodified ODN **P**. The *T_m* of the ribothioformacetal duplex was slightly lower relative to the *T_m*'s resulting from duplex derived from the thioformacetal and the control phosphodiester.

The synthesis of T*T dimer containing ribothioformacetal has been accomplished. The introduction of a hydroxyl group at the 2'-position has only a slight destabilization effect on the duplex formation in this context. The 2'-OH is known to stabilized glycosidic linkages to acidic conditions.¹¹ This ribo modification may find utility in thioformacetal containing oligonucleotide analogs which bear heterocycles particularly prone to deglycosylation such as adenine.

ACKNOWLEDGMENTS: We thank Terry Terhorst for ODN synthesis, Cathy Sueoka for base composition analyses, and Shalini Wadwani for *T_m* measurement and HgCl₂ mapping.

REFERENCES AND NOTES:

1. Milligan, J. F.; Matteucci, M. D.; Martin, J. C. *J. Med. Chem.* **1993**, *36*, 1923.
2. Jones, R. J.; Lin, K.-Y.; Milligan, J. F.; Wadwani, S.; Matteucci, M. D. *J. Org. Chem.* **1993**, *58*, 2983.
3. Niedballa, U; Vorbruggen, H. *Angew. Chem.*, **1970**, *82*, 449.
4. Compound **7**: ¹H-NMR δ H(300MHz, CDCl₃) 9.96 (s, 1H, -NH); 7.73 (s, 1H, 6-H); 6.70-7.46 (m, 1 H, Ar-H); 6.04 (d, 1H, H-1'); 5.93 (d, 1H, H-2'); 3.82-3.97 (m, 2H, H-3' and H-4'); 3.78 (s, 6H, 2x-OCH₃); 3.54 (ddd, 2H, H-5'); 2.02 (s, 3H, -OAc); 1.65 (s, 3H, 5-CH₃). MS. required 1235.4, found M⁺ 1234.8.
5. Himmelsbach, F.; Schultz, B. S.; Trichtinger, T.; Charubala, R.; Pfleiderer, W.; *Tetrahedron*, **1984**, *40*, 59.
6. Compound **12**: ¹H-NMR δ H(300MHz, CDCl₃) 9-10 (2 br.s, 2H, 2x-NH); 6.70-7.60 (m, 15 H, Ar-H and 2x6-H on T); 6.28 (t, 1H, H-1' of deoxyribo); 5.78 (d, 1H, H-1' of ribo); 5.72 (d, 1H, H-2' of ribo); 5.61 (q, 2H, -SCH₂O-); 4.40 (m, 1H, H-3' of deoxyribo); 3.78 (s, 6H, 2x-OCH₃); 3.30-4.20 (m, 7H, H-3', H-4', H-5' of ribo and H-4', H-5' of deoxyribo); 2.16-2.38 (m, 2H, H-2 of deoxyribo); 2.18 (s, 3H, -COCH₃); 1.94 (s, 3H, 5-CH₃ of deoxyribo T); 1.52 (s, 3H, 5-CH₃ of ribo T). MS: required 872.9, found M⁺ 872.4.
7. Marugg, J. E.; Tromp, M.; Kuyl-Yeheskiely, E.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron Lett.*, **1986**, *27*, 2661.
8. Froehler, B. C.; Ng, P.; Matteucci, M. D. *Nucl. Acid Res.* **1986**, *14*, 5399.
9. Corey, E. J.; Bock, M. G. *Tetrahedron Lett.* **1975**, *16*, 3269.
10. Eadie, J. S.; McBride, L. J.; Huff, L. B.; Cartheart, R. *Anal. Biochem.* **1987**, *165*, 442.
11. Michelson, A. M. in *The Chemistry of Nucleosides and Nucleotides*, Academic Press, NY, **1963** 26.

(Received in USA 21 December 1993; accepted 14 February 1994)